
Agenda

• 1st day – Afternoon
• MC Application

• Interface
• Tuning
• Tasks
• Classes interaction

• Current regulation

• Ramp-up

• Encoder alignment

• Speed sensors updates:

• Sensorless algorithm improvement

• How to create User Project Interacting with MC Application

• Dual motor control

• Resources sharing
• Supported configurations
• Code size efficiency

• Current reading sensor update

60

12/06/2014STM32 PMSM FOC SDK v3.2

MC Application

• The Motor Control Interface is the application built on top of the Motor Control Library
this application is able to grant to the user layer the execution of a set of commands,
named the MC Application Programming Interface (MC API).

• The API is divided in two sections:
• MC Interface

• MC Tuning

61

12/06/2014STM32 PMSM FOC SDK v3.2

PWMnCurrFdbkClass
CPWMC

SpeednPosFdbkClass
CSPD

Real sensor, observer

FOCDriveClass
CFOC

SpeednTorqCtrlClass
CSTC

RevupCtrlClass
CRUC

MC Interface commands

Method Description
MCI_StartMotor This is a user command used to start the motor. If is

possible, the command is executed instantaneously
otherwise the command is discarded. User must take care
of this possibility by checking the return value.

MCI_StopMotor This is a user command used to stop the motor. If is
possible, the command is executed instantaneously
otherwise the command is discarded. User must take care
of this possibility by checking the return value.

MCI_FaultAcknowledged This is a user command used to indicate that the user has
seen the error condition. If is possible, the command is
executed instantaneously otherwise the command is
discarded. User must take care of this possibility by
checking the return value.

MCI_EncoderAlign This is a user command used to start the encoder
alignment procedure. If is possible, the command is
executed instantaneously otherwise the command is
discarded. User must take care of this possibility by
checking the return value.

62

12/06/2014STM32 PMSM FOC SDK v3.2

STOP

STARTSTART

MC Interface buffered commands

• Buffered commands don't become active as soon as it is called but it
will be executed when machine is in a predefined state (Ex. RUN).

• If more that one buffered command is send before the execution only
the last is considered.

63

12/06/2014STM32 PMSM FOC SDK v3.2

MC Interface buffered commands
64

12/06/2014STM32 PMSM FOC SDK v3.2

Method Description
MCI_ExecSpeedRamp This is a buffered command to set a motor speed ramp.

This commands don't become active as soon as it is
called but it will be executed when the oSTM state is
START_RUN or RUN. User can check the status of the
command calling the MCI_IsCommandAcknowledged
method.

MCI_ExecTorqueRamp This is a buffered command to set a motor torque ramp.
This commands don't become active as soon as it is
called but it will be executed when the oSTM state is
START_RUN or RUN. User can check the status of the
command calling the MCI_IsCommandAcknowledged
method.

MCI_SetCurrentReferences This is a buffered command to set directly the motor
current references Iq and Id. This commands don't
become active as soon as it is called but it will be
executed when the oSTM state is START_RUN or RUN.
User can check the status of the when the oSTM state is
START_RUN or RUN. User can check the status of the
command calling the MCI_IsCommandAcknowledged
method.

Execute
a ramp

MC Interface get methods 1/2
65

12/06/2014STM32 PMSM FOC SDK v3.2

Method Description

MCI_IsCommandAcknowledged It returns information about the state of the last buffered
command.

MCI_GetSTMState It returns information about the state of the related oSTM
object.

MCI_GetMecSpeedRef01Hz It returns information about the current mechanical rotor
speed reference expressed in tenths of HZ.

MCI_GetAvrgMecSpeed01Hz It returns information about last computed average
mechanical speed, expressed in 01Hz (tenth of
Hertz).

MCI_GetTorqueRef It returns information about the current motor torque
reference. This value represents actually the
Iq current reference expressed in digit. To convert current
expressed in digit to current expressed
in Amps is possible to use the formula: Current(Amp) =
[Current(digit) * Vdd micro] / [65536 *
Rshunt * Aop].

MCI_GetCurrentsReference It returns information about stator current reference in
Curr_Components format.

MCI_GetControlMode It returns the modality of the speed and torque controller.

MC Interface get methods 2/2
66

12/06/2014STM32 PMSM FOC SDK v3.2

Method Description

MCI_GetTorque It returns information about current motor measured torque.
This value represents actually the Iq
current expressed in digit. To convert current expressed in
digit to current expressed in Amps is
possible to use the formula: Current(Amp) = [Current(digit) *
Vdd micro] / [65536 * Rshunt * Aop].

MCI_GetPhaseCurrentAmplitude It returns the motor phase current amplitude (0-to-peak) in
s16A To convert s16A into Ampere
following formula must be used: Current(Amp) =
[Current(s16A) * Vdd micro] / [65536 * Rshunt *
Aop].

MCI_GetPhaseVoltageAmplitude It returns the applied motor phase voltage amplitude (0-to-
peak) in s16V. To convert s16V into
Volts following formula must be used: PhaseVoltage(V) =
[PhaseVoltage(s16V) * Vbus(V)] /[sqrt(3)
*32767].

MCI_GetImposedMotorDirection It returns the motor direction imposed by the last command
(MCI_ExecSpeedRamp,
MCI_ExecTorqueRamp or MCI_SetCurrentReferences).

MC Tuning

• MCTuningClass acts as gateway to set/read data to/from objects (sensors, PI
controllers…) belonging to the MC application.

• The MCTuningClass allows the user to obtain objects of the MC application
and apply methods on them.

67

12/06/2014STM32 PMSM FOC SDK v3.2

PIRegulatorClass
CPI

Speed

Get object
MCT_GetSpeedLoopPID

Get Method
PI_SetKP

Object return
oPI

PI Tuning

MC Tuning get object 1/2 68

12/06/2014STM32 PMSM FOC SDK v3.2

MCT get object methods Desciption

MCT_GetFOCDrive It returns the FOCDrive object

MCT_GetSpeedLoopPID It returns the speed control loop PI(D) object

MCT_GetIqLoopPID It returns the Iq current control loop PI(D) object

MCT_GetIdLoopPID It returns the Id current control loop PI(D) object

MCT_GetFluxWeakeningLoopPID It returns the Flux Weakening control loop PI(D)
object

MCT_GetPWMnCurrFdbk It returns the PWMnCurrFdbk object

MCT_GetRevupCtrl It returns the Rev-up controller object

MCT_GetSpeednPosSensorMain It returns the Main Speed'n Position sensor object.
Main position sensor is considered the one used
to execute FOC one used to execute FOC

MCT_GetSpeednPosSensorAuxiliary It returns the Auxiliary Speed'n Position sensor
object. Auxiliary position sensor is considered
the one used to backup/tune the main one

MC Tuning get object 2/2 69

12/06/2014STM32 PMSM FOC SDK v3.2

MCT get object methods Desciption

MCT_GetSpeednPosSensorVirtual It returns the Virtual Speed'n Position sensor
object. Virtual position sensor is considered the
one used to rev-up the motor during the start-up
procedure required by the state-observer
sensorless algorithm

MCT_GetSpeednTorqueController It returns the Speed'n Torque Controller object

MCT_GetStateMachine It returns the State Machine object

MCT_GetTemperatureSensor It returns the Temperature sensor object

MCT_GetBusVoltageSensor It returns the Bus Voltage sensor object

MCT_GetBrakeResistor It returns the Brake resistor object

MCT_GetNTCRelay It returns the NTC Relay object

Tasks description

• Five tasks are currently used in the default project (ordered by priority)
• ‘High frequency’ task

• Clocked by ADC(s) JEOC interrupt(s), executes motor control duties requiring high
frequency rate and precise timing (e.g. FOC current control loop)

• ‘Safety’ task

• Executed each 500us, it handles through state machine object the fault generation
management

• ‘Medium frequency’ task

• Executed at configurable rate (SPEED_LOOP_FREQUENCY_HZ, Drive parameters.h’).
Processes requiring a precise timing are here executed (e.g. speed loop)

• ‘Low frequency’ task

• Executed every 10ms, it includes duties not requiring a very precise timing and/or needing
a low refresh rate (e.g. boot capacitors charge time counting)

• ‘User Interface’ task

• Executed each 100ms, LCD and keyboard refresh

70

12/06/2014STM32 PMSM FOC SDK v3.2

High frequency task
• The high frequency task executes for a given motor those duties requiring a high frequency rate and

a precise timing (e.g. FOC loop).

• It is triggered by ADC JEOC interrupt which is sanctioning the end of the related motor phase
currents reading.

• This trigger is only available in states START, START_RUN, IDLE_ALIGNMENT, ALIGNMENT, thus
the high frequency task is actually executed only in these states while it is not triggered otherwise

71

12/06/2014STM32 PMSM FOC SDK v3.2

Begin

Motor instance info
recovering from FIFO

Main sensor rotor
position update

Auxiliary sensor rotor
position update

Execute FOC current
control loop

Generate FOC
duration error

Main sensor rotor
position update

Auxiliary sensor rotor
position update

Clock virtual
sensor angle

update

FIFO update (motor
instance info are

deleted)

FOC duration
error

occurrence?

START_RUN?

Is state equal
to START or

START_RUN?

End

End

Only in case of
dual motor control

Only if main sensor is
either encoder or Hall

Only if auxiliary sensor
is either encoder or Hall

Yes

No

Only if main sensor is emulated
(STO or STO_CR classes)

Only if main sensor is emulated
(STO or STO_CR classes)

Only if main sensor is emulated
(STO or STO_CR classes)

Safety task 1/2
• If - in case of over voltage - FW is configured so as to switch on Rbrake or turn off PWM: 72

12/06/2014STM32 PMSM FOC SDK v3.2

Begin

Update state
machine flags

Turn off
resistive brake

Overvoltage
occurrence?

End

Case ON_OVER_VOLTAGE equal to
TURN_ON_R_BRAKE or TURN_OFF_PWM

Only if ON_OVER_VOLTAGE is
equal to TURN_ON_R_BRAKE

Is state equal to
FAULT_NOW or
FAULT_OVER?

No

Switch off PWM
Yes

Check temperature bus
voltage, over

current occurrence

Turn on
resistive

brake

No

Yes
Only if ON_OVER_VOLTAGE is
equal to TURN_OFF_PWM

Safety task 2/2
• The safety task executes in sequence, each 500us, the safety checks to each of the drives.

• Actions to be taken in case of over-voltage (turn on low side switches, turn off PWM or brake
resistor turn-on) are here managed.

• If - in case of over voltage - FW is configured so as to close low side switches:

73

12/06/2014STM32 PMSM FOC SDK v3.2

Begin

Check temperature, bus
voltage and over-current

Set OCPB* to
active

Update state
machine flags

Turn on low
sides

Is overvoltage Is overvoltage
occurrence

present

End

Case ON_OVER_VOLTAGE equal to
TURN_ON_LOW_SIDES

Only if OCPB*
is available

Only if OCPB*
is available

voltage Is over-voltage
present or
occurred?

Yes

No

Is state equal to
FAULT_NOW or
FAULT_OVER?

Has the occurred
over-voltage been
acknowledged?

No

No

Yes
Switch off

PWM

Yes Switch off
PWM

Set OCPB* to
inactive

Yes

No

Medium frequency task 1/2
• The medium frequency task executes - in sequence- the medium frequency tasks related to each of

the drives. Duties requiring a specific timing (e.g. speed controller) are here executed @
configurable frequency (SPEED_LOOP_FREQUENCY_HZ, Drive parameters.h’)

74

12/06/2014STM32 PMSM FOC SDK v3.2

Begin

Update main (auxiliary) average speed

Switch (State)Case START_RUN:

Generate
SW error

Update Iqdref

Generate speed
feedback error

Update Iqdref

Encoder

finished?

Encoder
alignment
finished?

EndEnd

Only if encoder main or aux
speed/position feedback

Case RUN:

Initializations
for RUN state

Go in RUN state

Case ALIGNMENT:

Go in ANY_STOP state

Error?
Yes

No

Error?
Yes

No

Generate
SW error

Update
Iqdref

End

No

Yes

Error?

Yes

No

Medium frequency task 2/2
75

12/06/2014STM32 PMSM FOC SDK v3.2

Begin

Update main (auxiliary) average speed

Switch (State)

Generate
SW error

Execute rev-up clocking
speed and Iqdref updates

Rev up

elapsed?

Rev-up
duration
elapsed?

End

End

Sensor-less speed/position feedback

Go in START_RUN
state Case START:

Go in
START_RUN

state

Error?
Yes

No
Yes

Generate
rev-up error

End

No

Error?

No

Yes

Sensor-ed speed/
position feedback

Yes

No

less Did sensor-less
algorithm
converge?

Generate
SW error

Low frequency task 1/2
• It executes - in sequence- the low frequency tasks related to each of the drives.

• It includes those duties not requiring a precise timing and/or needing a low refresh rate (e.g. stop
state permanency time or boot capacitors charge time counting).

• Execution rate is 100Hz, priority should be set just above background (main) priority (e.g.

• tskIDLE_PRIORITY+1 for FreeRTOS based applications)

• User commands such as ‘run’ or ‘stop’ motor are also processed in this task.

76

Begin

Clear main (& aux)
speed sensors

Switch (State)

MCI_UpdateCommand

Switch on
PWM

Generate SW
error

Did boot

charge start?

Did boot
capacitors

charge start? End

End

Case ANY_STOP:

Turn on low sides

No

Yes

Error?

Execute current
reading calibration

No

Yes

Error?

Yes

NoSwitch off PWM

Set STOP state
Permanency time

Go in STOP state
Case IDEL_START:

No

Yes Set capacitors
charge time

End

Did boot

charge end?

Did boot
capacitors

charge end?

Go in START state

Generate SW
error

Low frequency task 2/2
77

12/06/2014STM32 PMSM FOC SDK v3.2

Begin

MCI_UpdateCommand

Switch (State)Case IDLE_ALIGNMENT

Generate SW
error

Go in IDLE state

time elapsed?

Is
permanency
time elapsed?

End

Only if encoder main or
aux speed/position

Case STOP_IDLE

Case STOP

Go in STOP_IDLE
state

Error?
Yes

No

Generate
SW error

End

No

Yes

Error?

Yes

No

Did boot

charge start?

Did boot
capacitors

charge start?
Turn on low sides

Execute current
reading calibration

No

Yes

No

Yes Set capacitors
charge time

End

Did boot

charge end?

Did boot
capacitors

charge end?

Init alignment

Switch on PWM

Go in
ALIGNMENT state

Error?
Generate
SW error

End

Yes

No

