
Agenda

• 1st day – Morning
• Overview

• Key message
• Basics
• Feature
• Performance
• Hardware support

• Tools

• STM32 MC Workbench

• SDK components

• Architectural Layer
• MC Library

• OOP – Object Oriented Programming

• Our implementation of OOP

• Interrupt Handling

• Classes and interaction

23

12/06/2014STM32 PMSM FOC SDK v3.2

Architecture: SDK Components

• The STM32 PMSM FOC Library v3.2 is a Software
Development Kit (SDK)

• The development tools included are:
• MC Library (collection of classes, each describing elements involved in MC:

sensors, algorithms…)

• MC Application (implementation of the MC API, a set of high-level MC
commands)

• Demo User Project

• FreeRTOS Demo User Project (alternative)

• User Interface (utilities such as Serial communication, LCD/joystick
manager,DAC..)

• ST MC Workbench GUI (PC configuration tool)

• Documentation (User Manual, Developer Manual, doxygen source file Help)

24

STM32 PMSM FOC SDK v3.2 12/06/2014

Architecture: Layers

• According to components description, the SDK’s architecture can be
depicted as:

25

Demo User Project / Demo FreeRTOS User Project

MC Library CSpeedSensor

CHall

CEncoder

CSensorless

CCurrentSensor

C3shunt

C1shunt

CICS

CFOC

CFW

CMTPA

CFWMTPA

C..

C…

C…

MC Application CMCInterface CMCTuning MCTasks

MC API

FreeRTOS
OS

STM32F10x StdLib + CMSIS

UI
Library

StartMotor
StopMotor
ExecSpeedRamp
…

12/06/2014STM32 PMSM FOC SDK v3.2

Architecture scenario 26

API

MC Application

MC Library

UI Serial Com

STM32F10x Std Lib

User Application Layer

12/06/2014STM32 PMSM FOC SDK v3.2

Architecture: Projects, Customization

• Parameter files, generated by the ST MC Workbench GUI,
are used by the MC Application to instance objects from MC
Library classes. The IDE rebuilds the Application project,
links and creates the .exe

27

1010010..

.OBJ

MC Library
Project

MC Application
Project

User
Project

1010010101001
1010110101010
1010100..

.LIB

1100100101010
0010100101001
0101001..

.LIB

1110010..

.OBJ 1000010..

.OBJ

Linker

110111010101
001011110001
101010101..

.EXE

.h
Parameter

files

ST MC
Workbench GUI

SDK IDE

12/06/2014STM32 PMSM FOC SDK v3.2

Object Oriented Programming (OOP)

• OOP is a programming style; the data and the functions that operate on it are
packed together, forming an Object

• Instance Methods are functions associated with an object;

• Class is the factory from which objects are created. It is a user defined data
type (variables, properties, methods).

• A dedicated C embodiment of OOP has been developed for implementing the
MC Library

28

12/06/2014STM32 PMSM FOC SDK v3.2

OOP fundamental concepts
• Object

• The object is a collection of data structure (members) and functions (methods) allowed operating on
the data structure itself.

• Data structure contains both object properties and variables and can also be

referenced as the state of the object

• Class
• User defined data type containing variables, properties and methods

• A class can be considered the factory from which individual objects are created

• Method
• Methods are the only operations that can change the internal state of an object by modifying its

variables and properties

• Object internal variables are hided to object users: data encapsulation or data hiding

• Interface
• The interaction of objects with the outside world is defined by the methods that they export

• Methods form the interface with the outside world allowing a class to become more formal about the
behavior it promise and provides

29

12/06/2014STM32 PMSM FOC SDK v3.2

OOP fundamental concepts: Inheritance

• Inheritance
• Process through which a class inherits the member and the methods of another

class. This type of relationship is also known as child-parent or derived-base class.

• Derived (child) classes are more specialized version of the base (parent) class as
they inherit attribute and behavior from the base (parent) class but can also
introduce their own.

30

12/06/2014STM32 PMSM FOC SDK v3.2

State observer class

Specific methods IsObserverReliable(..)
Specific variables hBemf_alfa_est
Specific parameters hF1,…

Speed sensor class
Methods GetElSpeedDpp(…)
Variables ElSpeedDpp
Parameters bElToMecRatio

Encoder class

Specific methods ENC_SetDir…
Specific variables hPreviousCapture
Specific parameters ----

Speed sensor class
Methods GetElSpeedDpp(…)
Variables ElSpeedDpp
Parameters bElToMecRatio

OOP fundamental concepts: Virtual methods

• Virtual methods
• Base classes methods whose behavior depends on derived class specific

implementation

31

12/06/2014STM32 PMSM FOC SDK v3.2

PWMnCurrFdbk class interface
PWMC_SetPhaseVoltage(oCurrSensor) PWMC_GetPhaseCurr(oCurrSensor)
{ Execute SVPWM; { Curr_Component Local_Curr;
pSetADCSamplingPoint(this) Local_Curr = Jump to derived class
Return; } implementation;

Return(Local_Curr); }

R3LM1 derived class
Private functions
R3LM1_SetADCSampPoint
{
Compute registers value;
Configure ADC channel;
Write TIM register;
Return;
}
Class interface
R3LM1_NewObject(pBaseClassParams
, Derived class params);

R1HD2 derived class
Private functions
R1HD2_SetADCSampPoint
{
Compute registers value;
Configure ADC channel;
Write TIM register;
Return;
}
Class interface
R1HD2_NewObject(pBaseClassParams
, Derived class params);

Jump to derived class
implementation

User can always call
the
same base class
methods without
knowing the
implementation and
ignoring they are
virtual
methods

Only derived classes
are
HW dependant

OOP: advantages
• Code size efficient multiple motor control

• Multiple instances of objects (e.g. two sensorless objects) do not require duplication
of flash memory footprint

• Base classes (e.g. GetElSpeedDpp) code is shared by any derived class instance

• Increased safety through data hiding
• Object variables are only accessible through the object methods.
• This prevents them from being accidentally modified � higher robustness for final

applications (e.g. fuel pumps, applications related to human safety, …)

• Abstraction
• Users only need to know how to use the object interface without taking care of

background details or explanations

• Modularity
• The source code for a class implementation can be written and maintained

separately from other classes.

• Polymorphism
• The implementation of the inheritance allows reducing the number of lines where

it’s required to distinguish function calls depending on configuration

32

12/06/2014STM32 PMSM FOC SDK v3.2

… and the other side of the coin

• OOP it is not the best thing to be used in all
circumstances:

• Data hiding can make debug more difficult vs global variables

• OOP can result in higher execution time and bigger flash memory
footprint flash memory footprint

• Our C implementation of OOP has been conceived so as to be slim
and fast

• Improvement brought to implementations of v2.0 functions
compensated - in most of the cases - the introduction of the
architecture related execution time

• Sensor-less, 1 shunt configuration is even more performing compared
to v2.0

33

12/06/2014STM32 PMSM FOC SDK v3.2

